

Do Recent Findings on Jet Noise Raise Questions about the Schultz Curve?

Micah Downing
Michael James
Blue Ridge Research and Consulting

Kent Gee
Brigham Young University

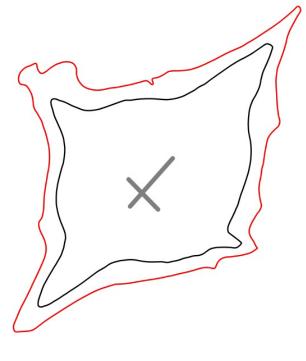
Sally Anne McInerny
University of Alabama

ADC40 Annual Summer Meeting San Luis Obispo July 22 – 25, 2007

Overview

人

Problem Statement
Overview of New Findings
Question Formed
Question Asked



Problem Statement

New generation fighter aircraft

- Increased thrust
- Significant noise levels
- Complex nozzles
- Dynamic directivity

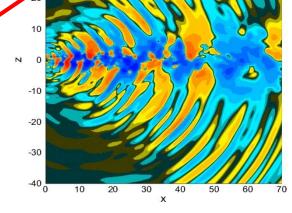
Also remember that

Old generation commercial jets

- Turbojet engines
- Low by-pass
- High thrust
- 20+ dB louder than current generation

DoD Research Project

Non-linear Propagation


- Theory
- Laboratory Experiment
- Field Experiments

3-D Jet Noise

- **■** Laboratory Measurements
- Numerical Simulations

3D Flight Tests

Real Aircraft

New and Improved Aircraft Noise Model:

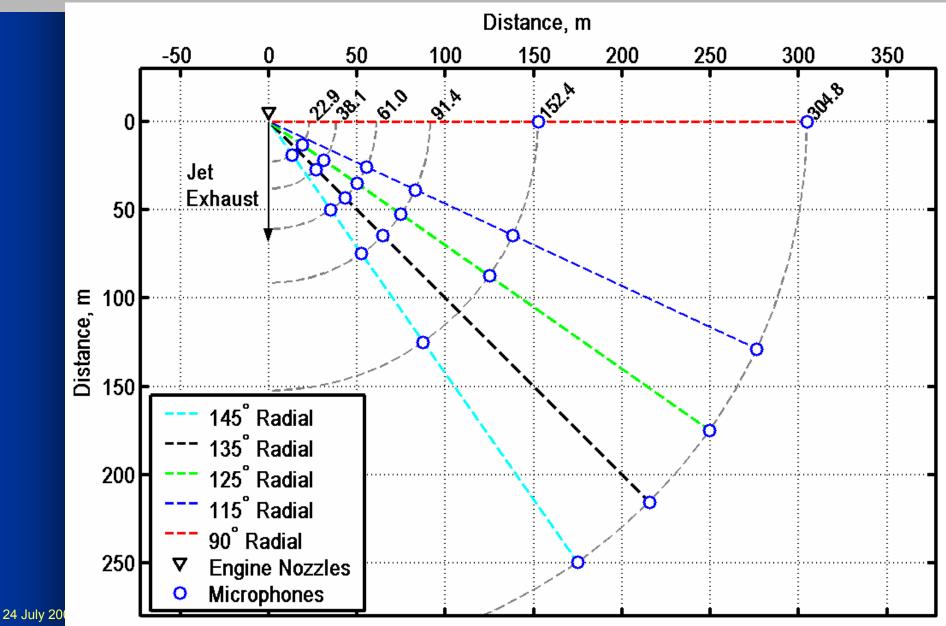
- Dynamic Simulation
- Improved Noise Database

First, a Few Comments

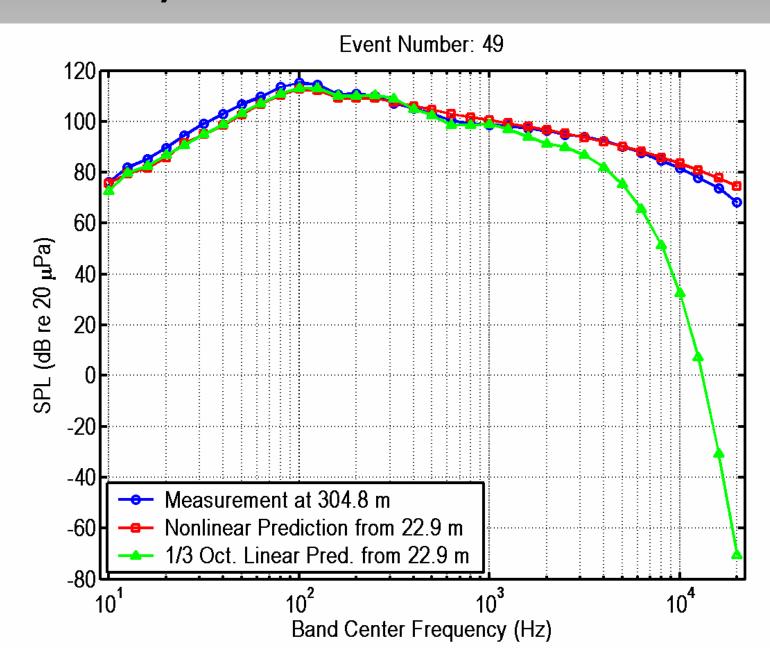
Nonlinearities in Jet Noise

Pestorius and Blackstock (1974), broadband spectrum:

- - high-frequency range


- - **low**-frequency range

→ Use statistics to identify and quantify nonlinear propagation effects in the pressure waveforms.



Measured Field Data

125°, AB Nonlinear Prediction

Impact of Nonlinearity

Question #1:

Is there a *perceived* difference between linear and nonlinear propagation?

Example: measured versus linear & nonlinear predicted waveforms

Measured

Linear Calc.

Nonlinear Calc.

Do you perceive a difference?

Linear vs. Nonlinear Calculations

Calculate waveform from reference location

Do you expect differences in metrics?

125° Level Calculations

Metric	Measured at 304.8 m (dB)	Nonlinear Prediction (dB)	Linear Prediction (dB)
OASPL-Flat	121.8	119.9	120.4
OASPL-A	111.0	111.4	110.2
OASPL-C	121.5	119.6	120.2
Mark VII PL	118.1	117.6	115.9

Not what I expected based on my ear

9

Impact of Nonlinearity

Question: How do we measure the perceived effect of "crackle"?

Example:

- Linear & nonlinear predicted waveforms
- → Nonlinear vs. Spectrally equivalent waveforms

Input

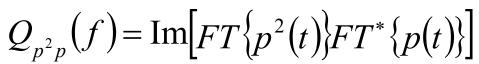
Linear Calc.

Nonlinear Calc.

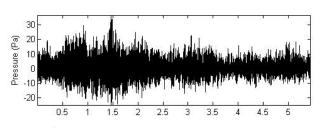
Gaussian

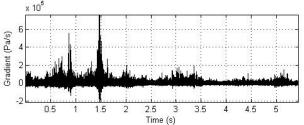
Spectral based measures do not seem to work!

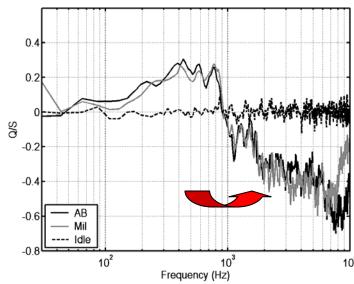
Need to account for shock structures – "crackle"



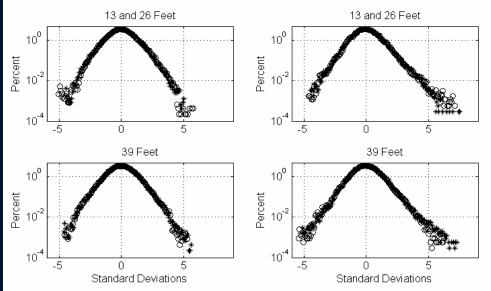
Potential Nonlinear Metrics

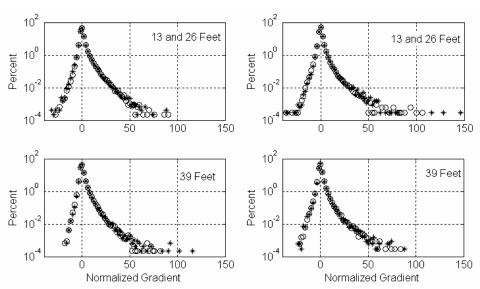



Physical Aspects


- → Basic: Lmax, Leq, A-wt, C-wt, etc.
- → Statistical: Skewness & Kurtosis
 - Pressure
 - Pressure gradients
- Morfey-Howell Indicator

$$Q/S = \frac{Q_{p^2p}}{p_{rms}S_{pp}}$$

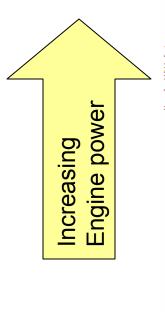



Statistical Parameters Military Jets

Histogram of Pressures

Histogram of Pressure Gradients

Highly skewed



Military Jet Noise: Q/S Plots

Level, constant power flyovers

Nonlinear effects

noted

Are you still with me?

Military jets

- Low by-pass engines + high thrust = high velocity
- Generate high amplitude acoustic waveforms which create shocks
- → Nonlinear propagation effects "crackle"
- Subjectively "louder" waveforms for similar overall SPL levels
- → So now my question

So now my question:

What is the character of aircraft noise included in social surveys in the Schultz curve and following revisions?

Some Background on Aircraft Noise

- 1969 FAA 14 CFR part 36
 - "Noise Standards: Aircraft Type Certifications"
- 1973 Stage designation for newly produced aircraft
- 1977 Stage 3 noise limits introduced
- 1985 4 engine Stage 1 aircraft banned
- 2000 All Stage 3

16

Schultz Data 1978

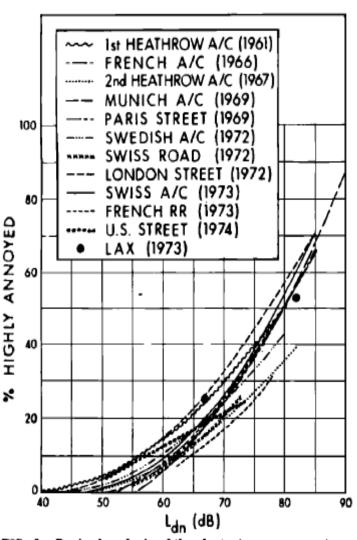


FIG. 2. Revised analysis of the clustering surveys using a rule for counting the percent highly annoyed that leaves out personal judgment in the individual surveys.

Miedema & Vos 1998

Reanalysis suggests differences between modes of transportation

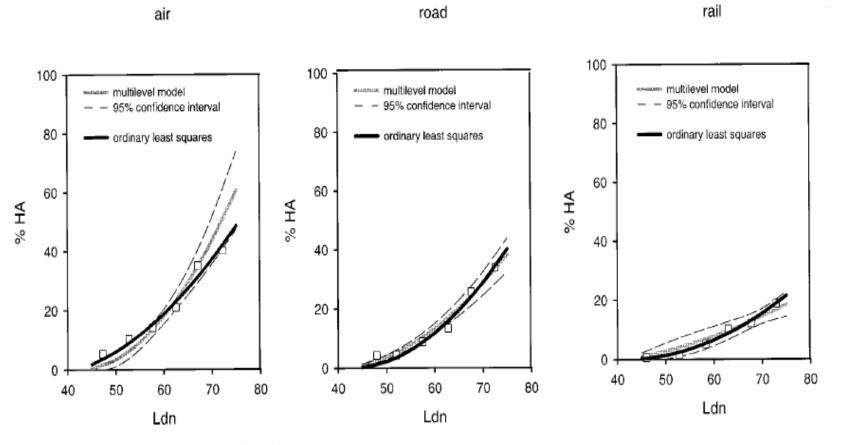


FIG. 3. Percentage highly annoyed persons (%HA) as a function of DNL. Two synthesis curves per mode of transportation, and the datapoints are shown. For the curves obtained with multilevel analysis the 95% confidence intervals are shown.

Aircraft Noise Surveys

AUL-210	Australian Five Airport Survey	(1980)
CAN-168	Canadian National Community Noise Survey	(1979)
FRA-016	French Four-Airport Noise Study	(1965)
FRA-239	French Combined Aircraft/Road Traffic Survey	(1984)
NET-240	Schiphol Combined Aircraft/Road Traffic Survey	(1984)
NOR-311	Oslo Airport Survey	(1989)
NOR-328	Bodo Military Aircraft Exercise Study	(1991–1992)
NOR-366	Vaernes Military Aircraft Exercise Study	(1990–1991)
SWE-035	Scandinavian Nine-Airport Noise Study	(1969-72,74,76)
SWI-053	Swiss Three-City Noise Survey	(1971)
UKD-024	Heathrow Aircraft Noise Survey	(1967)
UKD-242	Heathrow Combined Aircraft/Road Traffic Survey	(1982)
UKD-238	Glasgow Combined Aircraft/Road Traffic Survey	(1984)
USA-022	U.S.A. Four-Airport Survey (phase 1 of Tracor Survey)	(1967)
USA-032	U.S.A. Three-Airport Survey (phase II of Tracor Survey)	(1969)
USA-044	U.S.A. Small City Airports (small City Tracor Survey)	(1970)
USA-082	LAX Airport Noise Study	(1973)
USA-203	Burbank Aircraft Noise Change Study	(1979)
USA-204	John Wayne Airport Operation Study	(1981)
USA-338	U.S.A. 7-Air Force Base Study	(1981)

Ref: Schultz 1978 & Fidell et al. 1991 & Miedema and Vos, 1998

Aircraft Noise Surveys

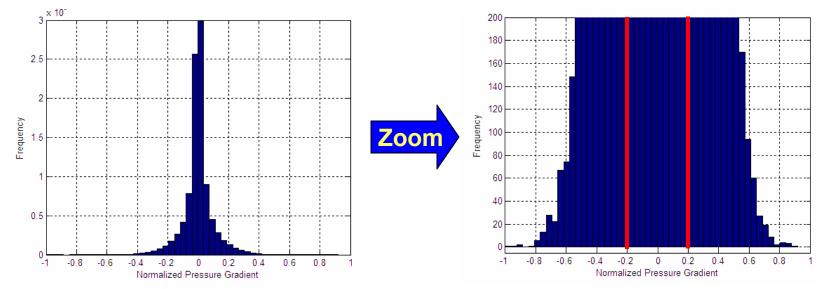
AUL-210	Australian Five Airport Survey	(1980)
CAN-168	Canadian National Community Noise Survey	(1979)
FRA-016	French Four-Airport Noise Study	(1965)
FRA-239	French Combined Aircraft/Road Traffic Survey	(1984)
NET-240	Schiphol Combined Aircraft/Road Traffic Survey	(1984)
NOR-311	Oslo Airport Survey	(1989)
NOR-328	Bodo Military Aircraft Exercise Study	(1991–1992)
NOR-366	Vaernes Military Aircraft Exercise Study	(1990–1991)
SWE-035	Scandinavian Nine-Airport Noise Study	(1969-72,74,76)
SWI-053	Swiss Three-City Noise Survey	(1971)
UKD-024	Heathrow Aircraft Noise Survey	(1967)
UKD-242	Heathrow Combined Aircraft/Road Traffic Survey	(1982)
UKD-238	Glasgow Combined Aircraft/Road Traffic Survey	(1984)
USA-022	U.S.A. Four-Airport Survey (phase 1 of Tracor Survey	(1967)
USA-032	U.S.A. Three-Airport Survey (phase II of Tracor Surve	y)(1969)
USA-044	U.S.A. Small City Airports (small City Tracor Survey)	(1970)
USA-082	LAX Airport Noise Study	(1973)
USA-203	Burbank Aircraft Noise Change Study	(1979)
USA-204	John Wayne Airport Operation Study	(1981)
USA-338	U.S.A. 7-Air Force Base Study	(1981)

Ref: Schultz 1978 & Fidell et al. 1991 & Miedema and Vos, 1998

Hard to get good data on old aircraft

- Dynamic range of instrumentation
- Medium of storage
- (So, thanks David)

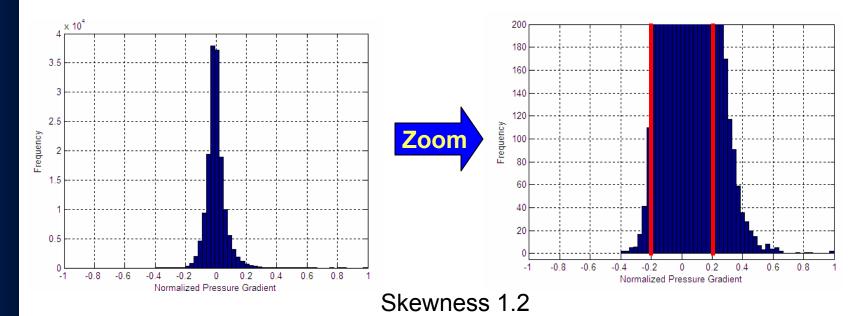
Three examples:

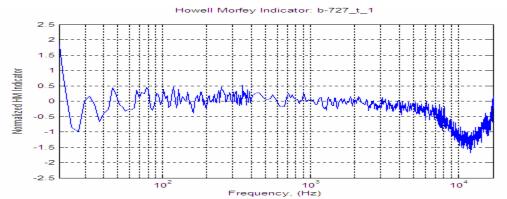

- → 707 with newer engine
- → 727 departure
- Concorde departure

707 (with newer engine?)

Distribution of Normalized Pressure Gradient

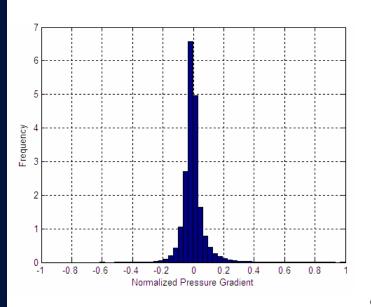
Skewness 0.004

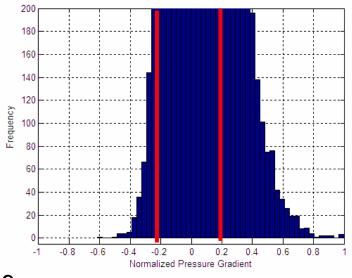

HMI


727

Distribution of Normalized Pressure Gradient

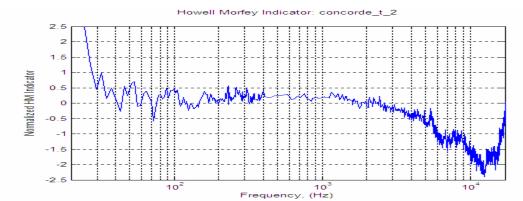
HMI





Concorde

Distribution of Normalized Pressure Gradient



Skewness 2.9

HMI

Wrap - Up & Question

- High amplitude jet noise
 - Nonlinear propagation effects
 - Shocks generate subjectively "louder" events
- Spectra-based metrics do not capture perceived loudness
 - Old commercial aircraft noise seem to contain "crackle"
 - Social surveys mainly involved old aircraft
 - Does this explain difference noted by Miedema & Vos?
 - If so, can we adjust Schultz curve to better correlate with today's commercial aircraft?

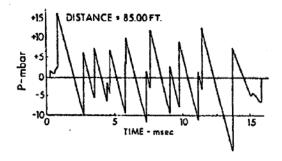
Questions

Thank you for listening

24 July 2007 26

Back up

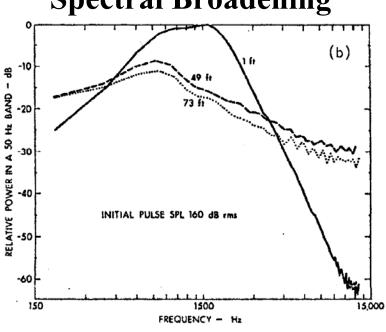


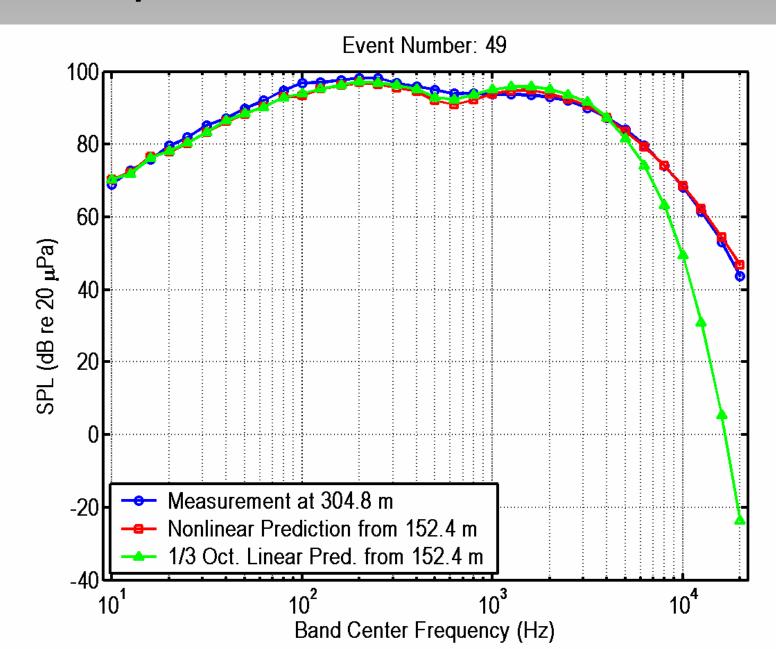

First, a Few Comments

Classic Blackstock data:

Steepening

Spectral Broadening




Fig. 4. (a) Comparison of measured noise waveforms near (at distance 1 ft = 0.3 m) and far away (85 ft = 29 m) from the source. (b) Related noise spectra measured at distances 1 ft (0.3 m), 49 ft (15 m), and 73 ft (27.3 m) (Pestorius and Blackstock, 1974).

[Hamilton and Blackstock, 1998]

24 July 2007 28

90°, AB Nonlinear Prediction

Sample of Stage 3

757 Landing

- → High by pass turbo fan
- → Crackle not present